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The US Endangered Species Act of 1973 (ESA) affords many potential benefits to species threatened with extinction. However, most at-risk 
amphibians—one of the most imperiled vertebrate groups—remain unlisted under the provisions of the ESA, and many impediments to recovery 
exist for those species that have been listed. Of the 35 US amphibian species and distinct population segments (“taxa”) listed under the ESA, 40% 
currently lack a final (completed) recovery plan, 28.6% lack designated critical habitat, and 8.6% lack both. For taxa that have recovery plans, 
the time between their listing and the development of those plans was from 2 to 29 years, and the time between their listing and the designation 
of critical habitat ranged from 0 to 14 years. The underlying causes of such delays in protection are complex and constitute obstacles to recovery 
of imperiled species. We outline a series of strategic actions by which these challenges may be overcome.
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The Endangered Species Act of 1973 (ESA) is one    
of the most important environmental laws ever enacted 

in the United States. The purposes of the ESA are “to provide 
a means whereby the ecosystems upon which endangered 
species and threatened species depend may be conserved, to 
provide a program for the conservation of such endangered 
species and threatened species, and to take such steps as 
may be appropriate to achieve the purposes of the treaties 
and conventions set forth” (ESA 1973). Consequently, spe-
cies that are listed under the ESA may potentially receive 
diverse benefits, such as the development of recovery plans, 
protection from unauthorized take, designation of critical 
habitat (CH), scientific research, captive breeding, public 
education, and habitat restoration and acquisition (Taylor 
et al. 2005). Since the ESA was enacted, less than 1% of listed 
species have become extinct, and the status of 52% of listed 
species has stabilized or improved (Male and Bean 2005). 
For many species, improvements in population viability are 
proportional to the length of time a species has been listed 
(Male and Bean 2005).

Critics argue, however, that during the first 21 years 
(1973–1994) of the ESA’s existence, 108 species of plants and 
animals became extinct (Suckling et  al. 2004). Eighty-five 
of these species (79%) were not protected by the ESA prior 
to extinction, and listing delays likely contributed to the 
extinction of the remaining 23 listed species (Suckling et al. 

2004). Globally, at least 32.5% of all amphibian species are at 
risk of extinction, making them one of the most imperiled 
vertebrate taxa (Stuart et al. 2004). In the United States, only 
one modern-day amphibian species (Plethodon ainsworthi) 
has been declared extinct by the International Union for the 
Conservation of Nature (IUCN), although some contend 
that this species is not a valid taxon (Himes and Beckett 
2013). NatureServe and the IUCN revealed that 80%–82% 
of at-risk amphibian species in the United States remained 
unlisted under the ESA (Gratwicke et al. 2012, Harris et al. 
2012). Moreover, amphibians received only 25% of the ESA 
funding allocated to other vertebrate groups between 2004 
and 2007 (Gratwicke et  al. 2012). These delays and biases 
are not unique to amphibians. There are demonstrably fewer 
plant, invertebrate, fish, and amphibian species listed com-
pared with reptiles, birds, and mammals (Evans et al. 2016). 
Plants and invertebrates have also had longer delays in the 
listing process than vertebrates (Puckett et al. 2016).

Our intent is to explore some of the issues that historically 
have been challenges for the successful recovery of declining 
amphibian populations and then to outline strategic actions 
that could help reduce such challenges, especially when 
a lack of demographic data may hinder recovery efforts. 
We focus on amphibians because of the severity of their 
declines and because of the ecosystem services they provide 
(Hocking and Babbitt 2014). The loss of these services could 
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have cascading impacts on the structure, composition, and 
dynamics of food webs, as well as on the transfer of energy 
and nutrients between aquatic and terrestrial ecosystems.

Challenges to recovery: Delays and biases in listing, 
the development and implementation of recovery 
plans, and the designation of critical habitat
The principal legislative tools authorized by the ESA for pro-
moting species recovery are funding, recovery-plan develop-
ment, and CH designation (Gibbs and Curie 2012). Studies 
of these tools’ effectiveness, however, have produced con-
flicting results: Gibbs and Currie (2012) questioned whether 
species-recovery data could adequately assess the effective-
ness of recovery plans and other tools. Issues regarding fund-
ing for species recovery have been addressed by others (e.g., 
Gratwicke et  al. 2012, Evans et  al. 2016, Gerber 2016) and 
are not discussed herein. However, the other tools—recovery 
plans and CH—clearly must exist before they can effectively 
promote species recovery. We examined the extent of recov-
ery-plan development and CH designation for threatened 
and endangered amphibians in the United States. According 
to the USFWS Environmental Conservation Online System 
(US Fish and Wildlife Service (USFWS) 2016a), 35 taxa of 
amphibians in the United States and its territories, including 
three distinct population segments (DPS) of the California 
tiger salamander (Ambystoma californiense) and two DPS of 
the southern mountain yellow-legged frog (Rana muscosa), 
are currently listed as threatened or endangered. For each of 
these 35 taxa, we summarized data on the year that a taxon 
was listed, whether a recovery plan exists, and whether CH 
has been designated (table 1). As of August 2016, 40% and 
28.6% of these taxa lack either a final recovery plan or des-
ignated CH, respectively, and three species (8.6%) lack both 
(table 1; figure 1). However, the percentage of amphibian 
taxa with designated CH (71.4%) is greater than that of all 
listed US species combined: As of 2015, CH had been des-
ignated for only 45% of listed species (Martin et al. 2016).

For many listed amphibians that have recovery plans and 
CH, time lags occurred between when a species was listed, 
when a recovery plan was developed and implemented, and 
when CH was designated. For example, for the 18 taxa with 
completed recovery plans, the time lapse between listing and 
completion of those plans was from 2 to 29 years (mean = 
8.9, standard deviation [SD] = 6.23 years; median = 7 years; 
mode = 5 years; table 1). The recovery plan for the Puerto 
Rican  golden coquí (Eleutherodactylus jasperi) was com-
pleted in 1984—7 years after listing—although no individuals 
have been found since 1981 (Diaz 1984). Existence of a recov-
ery plan does not guarantee that recovery actions are imple-
mented; for the desert slender salamander (Batrachoseps 
aridus) few recovery actions have been implemented since 
its recovery plan was developed in 1982 (USFWS 2016a). 
Conversely, a lack of a recovery plan does not prevent recov-
ery efforts from being executed, which could stabilize declin-
ing populations and reverse the need for listing (e.g., the 
relict leopard frog, Lithobates onca; see below).

Under the ESA, CH is defined as “the specific areas within 
the geographic area, occupied by the species at the time it 
was listed, that contain the physical or biological features 
that are essential to the conservation of endangered and 
threatened species, and that may need special management 
or protection” (USFWS 2016b). Critical habitat designation 
occurring at or near the time of listing can offer “a form of 
early conservation planning guidance …to bridge the gap 
until the Services [USFWS and National Marine Fisheries 
Service (NMFS)] can complete recovery planning” (USFWS 
2016c). For 22 amphibian taxa that have designated CH, 
there were delays of up to 14 years (mean = 4.09, SD = 4.47 
years; median = 2.0 years; mode = 0 years; table 1). Seven of 
these taxa had no delays because CH was designated simul-
taneously with listing (table 1).

In addition to delays in recovery planning and CH desig-
nation, there have been delays in the listing process as well. 
In a recent review, Puckett and colleagues (2016) concluded 
that 1338 species waited a median of 12.1 years for final list-
ing as threatened or endangered under the ESA; the median 
for amphibians (n = 22) was 9.99 years from “initiation” to 
listing. These figures may overestimate the actual length of 
delays, however, because of differing interpretations of the 
USFWS’s category 2 (C2) label (USFWS 1996). Beginning 
in 1982, the USFWS periodically released comprehensive 
reviews of the conservation status of animal taxa (USFWS 
1982). In these notice of review (NOR) documents, species of 
interest were assigned to categories: category 1 (C1) species 
were those for which the USFWS had enough information 
to warrant listing, but a proposed rule was precluded; C2 
species were those for which listing was “possibly appropri-
ate” but lacked sufficient data (USFWS 1996). From October 
1976 to September 1984, author CKD was the herpetologist 
for the USFWS endangered-species program and compiled 
the amphibian portions of the 1982 and 1985 NORs. He 
emphasized that those NORs did not confer any legal or 
official status to C2 species. With fewer communication 
methods than those in the present day, information on spe-
cies’ statuses was slow to reach the endangered-species office; 
therefore, CKD included species on the NORs about which 
he had heard concerns (even from informal conversations 
with colleagues) and hoped that the C2 designation would 
spur biologists to submit additional information. For exam-
ple, CKD included the flatwoods salamander (Ambystoma 
cingulatum) on the 1982 and 1985 NORs but said that 
empirical information regarding its status was very limited.

In a 1996 NOR, the USFWS eliminated category designa-
tions to reduce confusion regarding C2 species; most former 
C1 species became “candidate species,” whereas most former 
C2 species were removed altogether (USFWS 1996). Eighty-
three amphibian taxa were designated C2 on at least one 
NOR between 1982 and 1994 (USFWS 1982, 1985, 1991, 
1994a); 57 former C2 taxa were removed in 1996. In total, 
19 of the 83 C2 taxa have been listed as threatened or endan-
gered, including 7 of the 57 taxa that were removed in 1996 
(USFWS 2016a).
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Table 1. Amphibian species in the United States and its territories that are currently listed as threatened or endangered 
under the US Endangered Species Act (ESA).
Species Common name Status USFWS lead

region
Time 
from 

initial to 
proposed

Time from 
proposed 
to listing

Total 
time

Date
listed

Completed 
recovery 

plan?

Designated 
critical 
habitat 

finalized?

Anurans

Anaxyrus baxteri Wyoming toad E 6 (mountain–
prairie)

28 355 383 1984 Yes (revised, 
2015; original 

completed 
1991)1

No

Anaxyrus 
californicus

Arroyo toad E2 8 (CA/NV) 216 500 716 1994 Yes (1999) Yes (initial 
final 2001, 

2005; revised 
2011)3

Anaxyrus canorus Yosemite toad T 8 (CA/NV) (4798) (431) (5229) 2014 No Yes (2016)

Anaxyrus 
houstonensis

Houston toad E 2 (SW) * * * 1970 Yes (1984) Yes (1978)

Eleutherodactylus 
cooki

Guajón T 4 (SE) 321 618 939 1997 Yes (2004) Yes (2007)

Eleutherodactylus 
jasperi

Golden coquí T (believed 
to be 

extinct)

4 (SE) 0 220 220 1977 Yes (1984) Yes (1977)

Eleutherodactylus 
juanariveroi

Llanero coquí E 4 (SE) 1604 358 1962 2012 No Yes (2012)

Lithobates 
chiricahuensis

Chiricahua leopard 
frog

T 2 (SW) 2165 729 2894 2002 Yes (2007) Yes (2012)

Lithobates sevosus Dusky gopher frog E 4 (SE) 3106 560 3666 2001 Yes (Final 
2015)

Yes (2012)

Peltophryne lemur Puerto Rican 
crested toad

T 4 (SE) 719 224 943 1987 Yes (1992) No

Rana draytonii California red-
legged frog

T 8 (CA/NV) 804 841 1645 1996 Yes (2002) Yes (2010)

Rana muscosa
(Northern DPS)

Southern mountain 
yellow-legged frog

E 8 (CA/NV) (4816) (431) (5247) 2014 No Yes (2016)

Rana muscosa
(southern California 
DPS)

Southern mountain 
yellow-legged frog

E 8 (CA/NV) (1623) (953) (2576) 2002 No Yes (2006)

Rana pretiosa Oregon spotted 
frog

T 1 (Pacific) (8883) (365) (9248) 2014 No Yes (2016)

Rana sierrae Sierra Nevada 
yellow-legged frog

E 8 (CA/NV) (0) (431) (431) 2014 No Yes (2016)

Salamanders

Ambystoma bishopi Reticulated 
flatwoods 
salamander

E 4 (SE) 0 181 181 2009 No Yes (2009)

Ambystoma 
californiense 
(Central California 
DPS)

California tiger 
salamander

T 8 (CA/NV) * * * 2004 No
(Draft 2016)

Yes (2005)

Ambystoma 
californiense (Santa 
Barbara County 
DPS)

California tiger 
salamander

E 8 (CA/NV) * * * 2000 No
(Draft 2015)

Yes (2004)

Ambystoma 
californiense 
(Sonoma County 
DPS)

California tiger 
salamander

E 8 (CA/NV) * * * 2002 No
(Draft 2014)

Yes (Final 
2005; 

Revised 
2011)3

Ambystoma 
cingulatum

Frosted flatwoods 
salamander

T 4 (SE) 2038 471 2509 1999 No Yes (2009)

Ambystoma 
macrodactylum 
croceum

Santa Cruz long-
toed salamander

E 8 (CA/NV) * * * 1967 Yes (1977; 
Draft Revised 

1999)1

No; Proposed 
in 1978

Ambystoma tigrinum 
stebbinsi

Sonora tiger 
salamander

E 2 (SW) 1229 644 1873 1997 Yes (2002) No
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In many instances, Puckett and colleagues (2016) consid-
ered the date a species was designated C2 to be the initial 
date that the USFWS considered it for listing. For example, 
flatwoods salamanders were listed as C2 in the 1982 NOR 
(USFWS 1982); however, the USFWS had no legal obligation 
to consider flatwoods salamanders for listing until a petition 
was filed in May 1992 (USFWS 1994b). We repeated the cal-
culations for the 22 amphibian species included in Puckett 
and colleagues (2016), assuming that the initial date was 
when (a) a species was first designated as C1, (b) a species 
was listed as a candidate post-1996, or (c) when a petition 
was filed (table 1). Under these assumptions, the median 
time to listing was 4.82 years, versus 9.99 years in Puckett 
and colleagues (2016).

Some salient examples of amphibians that experienced 
listing delays include the dusky gopher frog (Lithobates 

sevosus), now listed as endangered, and the black warrior 
waterdog (Necturus alabamensis), recently proposed to be 
listed as endangered (USFWS 2016d). The dusky gopher 
frog, considered to be one of the “100 most critically 
endangered species in the world” by the IUCN (Baillie 
and Butcher 2012), was formally listed as endangered in 
2001 (USFWS 2001), with CH designated in 2012 (USFWS 
2012), although concern about its status was first raised 
in 1982 (USFWS 1982). These delays occurred despite the 
species existing in low abundance at a single breeding site 
(USFWS 2001). Lannoo (2012) pointed out that “roughly 
8–10 Dusky Gopher Frog generations” elapsed during the 
30 years between the time of first concern and critical habi-
tat designation. This postponement likely contributed to 
the species’ extreme endangerment. Currently, this species 
may exist in three small populations—each composed of 

Table 1. Continued.
Species Common name Status USFWS lead

region
Time 
from 

initial to 
proposed

Time from 
proposed 
to listing

Total 
time

Date
listed

Completed 
recovery 

plan?

Designated 
critical 
habitat 

finalized?

Batrachoseps major 
aridus

Desert slender 
salamander

E 8 (CA/NV) * * * 1973 Yes (1982) No

Cryptobranchus 
alleganiensis bishopi

Ozark hellbender E 3 (Great 
Lakes-Big 
Rivers)

3235 393 3628 2011 No No

Eurycea 
chisholmensis

Salado 
salamander

T 2 (SW) 3723 551 4274 2014 No No

Eurycea nana San Marcos 
salamander

T 2 (SW) 0 731 731 1980 Yes (Revised 
1996)

Yes (1980)

Eurycea naufragia Georgetown 
salamander

T 2 (SW) 3949 551 4500 2014 No No

Eurycea (= 
Typhlomolge) 
rathbuni

Texas blind 
salamander

E 2 (SW) * * * 1967 Yes (Revised 
1996)

No

Eurycea sosorum Barton Springs 
salamander

E 2 (SW) 757 1168 1925 1997 Yes (2005) No

Eurycea tonkawae Jollyville Plateau 
salamander

T 2 (SW) 2627 363 2990 2013 No Yes (2013)

Eurycea 
waterlooensis

Austin blind 
salamander

E 2 (SW) 3723 363 4086 2013 No
(Draft 2015)

Yes (2013)

Phaeognathus 
hubrichti

Red Hills 
salamander

T 4 (SE) 0 429 429 1977 Yes (1983) No

Plethodon 
neomexicanus

Jemez Mountains 
salamander

E 2 (SW) (6929) (1065) (7994) 2013 No Yes (2013)

Plethodon nettingi Cheat Mountain 
salamander

T 5 (NE) 0 324 324 1989 Yes (1991) No

Plethodon 
shenandoah

Shenandoah 
salamander

E 5 (NE) 0 324 324 1989 Yes (1994) No

Note: “Time from initial to proposed” is the interval (in days) from when a species became a candidate (either first designated as C1, listed as 
a candidate after 1996, or when a petition was filed) to the date when it was proposed for listing; “time from proposed to listing” is the interval 
from when a species was proposed for listing to when a species was finally listed; “total time” is the sum of these two. The italicized numbers 
in parentheses represent the number of days in the above categories for species that were not included in Puckett and colleagues (2016). Time 
data are not provided for the remaining species (indicated by *) because they were either listed prior to the enactment of the ESA or because 
their individual times until listing were unclear due to the involvement of multiple DPSs.
Abbreviations: E = endangered; T = threatened; DPS = Distinct Population Segment.
1 Earlier date used in calculating time to development of a recovery plan from date of listing.
2 The Arroyo toad was proposed to be downlisted to threatened in 2012, but the proposed rule was withdrawn in 2015.
3 Designated critical habitat was revised for the Sonoma County DPS of the California tiger salamander and for the Arroyo
toad. For these two species, we used the earlier date of designation of critical habitat in calculating the time to the designation of critical habitat 
from the date of listing.
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a single breeding pond—although recent surveys failed to 
detect egg masses in one of the ponds (Hinkson and Richter 
2016).

The black warrior waterdog was recognized by the 
USFWS as a C2 species in 1991 and given candidate status in 
1999. Its need for protection was re-emphasized in separate 

megapetitions submitted in 2004 (for 225 species) and 2010 
(for 404 species; USFWS 2016a). A proposed rule to list 
this species as endangered was published in October 2016, 
along with a proposed rule for designation of CH (USFWS 
2016d). Although these are extreme examples, they illustrate 
that some species have experienced lengthy delays in listing, 

Figure 1. The six species of amphibians recently listed under the Endangered Species Act that either received designated 
critical habitat in 2016 but still lack recovery plans (a, b, and c) or still lack both critical habitat and recovery plans  
(d, e, and f): (a) the Yosemite toad (Anaxyrus canorus), listed as threatened in 2014 (photograph: Sam Murray);  
(b) the Sierra Nevada yellow-legged frog (Rana sierrae), listed as endangered in 2014 (photograph: Sam Murray); (c) the 
southern mountain yellow-legged frog (Rana muscosa), of which the northern distinct population segment was listed as 
endangered in 2014 (photograph: Todd Hoggan); (d) the Salado salamander (Eurycea chisholmensis), listed as threatened 
in 2014; (e) the Georgetown salamander (Eurycea naufragia), also listed as threatened in 2014 (photographs: Nathan 
Bendik); and (f) the Ozark hellbender (Cryptobranchus alleganiensis bishopi), listed as endangered in 2011  
(photograph: Kory G. Roberts).
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which deny imperiled species protection provided by the 
ESA (Puckett et al. 2016).

Until recently, the relict leopard frog had been considered 
potentially in need of ESA protection for 39 years, since 
author CKD compiled the first amphibian NOR in 1977. 
Once thought to be the first North American amphibian 
to become extinct, this species was rediscovered in 1991 
and added to the candidate species list in 2002. However, 
the relict leopard frog has gone from presumed extinction 
to a success story in the making. The Relict Leopard Frog 
Conservation Team, composed of federal, state, and local 
partners, implemented ongoing habitat restoration and 
management, established new breeding sites, reared tad-
poles in captivity, and translocated individuals to new and 
naturally occurring populations. Consequently, the status of 
the relict leopard frog has improved such that it is stable or 
increasing across its range; it was removed from the candi-
date list in October 2016 (USFWS 2016e).

Why do delays and biases occur?
Critics argue that, historically, the scientific community 
as a whole bears significant responsibility for its delays in 
acknowledging the existence of a global amphibian crisis. 
For example, after the first reports of enigmatic amphibian 
declines in the 1970s, it took 19 years for concerns that these 
declines were a global phenomenon to gain momentum 
(Stuart 2012). It was then another 8 years before global 
consensus was reached and another 2 years for a major 
driver of many declines, the amphibian chytrid fungus 
(Batrachochytrium dendrobatidis), to be identified (Stuart 
2012). Stuart (2012) stated that this delay “has to be close 
to a record in terms of slowness of scientific response in the 
face of a global crisis.”

In addition to this initially slow response from the major-
ity of the scientific community, other factors have postponed 
timely conservation actions, such as “political indecision, 
scientific disagreement, lack of funding, or lack of basic 
knowledge” (Muths and Fisher 2015). Here, we discuss 
some of these factors as well as others not previously men-
tioned, such as the influence of increasing trends in citizen 
petitions, human behavioral biases, and the availability of 
demographic information for decisionmaking.

Increasing trend in petitions: A controversy.  An important facet 
of the ESA is that it affords the public the opportunity to 
petition for species listing, and citizen-initiated petitions, 
litigation, and related lawsuits have increased substantially 
in recent years. Since 2007, the USFWS has been peti-
tioned to list more than 1250 species, which is nearly as 
many species as those listed during the previous 30 years 
of administering the ESA (USFWS 2016f). In particular, 
the USFWS received three “megapetitions,” which consisted 
of simultaneous requests for reviews of hundreds of spe-
cies, including 53 reptile and amphibian species across the 
United States (Adkins Giese et al. 2012). In the view of the 
USFWS, “the deadlines for responding to this large increase 

in petitions, driven in large part by these megapetitions, have 
overwhelmed the capacity of the [USFWS] Listing Program 
and required diverting significant human and financial 
listing resources to the task of completing findings for the 
petitioned species” (USFWS 2016f). The USFWS has since 
revised its regulations such that future petitions will be 
limited to a single “taxonomic” species, as opposed to previ-
ous acceptance of multispecies petitions and megapetitions 
(USFWS 2016g). This change is expected to “improve the 
content and specificity of petitions … to enhance the effi-
ciency and effectiveness of the petition process to support 
species conservation” (USFWS 2016g).

As a result of settlements between the Department of 
Interior and two environmental organizations in 2011, the 
USFWS listed a total of 248 species between 2012 and 2016, 
compared with 82 that were listed in the previous 5 years 
(2007–2011; USFWS 2016a). This overall increase in list-
ing actions likely explains the increase in number of listed 
amphibians in the last two time intervals shown in figure 2. 
Of those amphibian species that have been listed under 
the ESA, nearly one-third (28%) were listed from 2012 to 
2014 (table 1; figure 2). Following the 2011 settlements, 
the USFWS committed to publishing certain ESA listing 
actions, such as petition findings, listing determinations, 
and CH designations in fiscal years 2013–2018, and along 
with the NMFS is working to accomplish regulatory changes 
to implement the ESA (USFWS 2016f).

Human behavior.  Resource managers make decisions every 
day, but those regarding threatened and endangered spe-
cies management are especially difficult because they are 
characterized by public scrutiny, threat of litigation, a sense 
of urgency, and various types of uncertainty (Kujala et  al. 
2013). Failure to solve complex conservation problems, 
such as species recovery, rarely result from a single missed 
opportunity, but are more likely the cumulative effect of fail-
ing to take appropriate action on multiple occasions (Yaffee 
1997, Brook et al. 2014). A lack of action does not imply a 
lack of activity: What may be perceived as largely symbolic 
actions, such as developing strategies and spending money, 
may be occurring despite a lack of overt progress in solving a 
particular problem (Whitten et al. 2001, Jaramillo-Legorreta 
et al. 2007, Martin et al. 2012).

We identify at least three human behavioral issues that 
may have been the ultimate drivers in delays in species recov-
ery: (1) Status quo bias: “Doing nothing” or maintaining the 
current condition are valid management alternatives, and it 
is not uncommon for decisionmakers to adhere to familiar 
management activities even when they perform subopti-
mally with regard to the stated objectives (Samuelson and 
Zeckhauser 1988, Maguire and Albright 2005). (2) Fear of 
failure: Maguire and Albright (2005) reported that when for-
est managers relied on mental shortcuts for making complex 
decisions, they systematically biased their decisions toward 
risk aversion to the point of jeopardizing management 
goals. Despite what may seem like obvious opportunities 
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to act when observed from the outside, decisionmakers 
may feel less responsible for the negative consequences of 
failing to act than they do for the negative consequences 
of deliberate intervention (Camerer and Kunreuther 1989). 
Fear of failure is derived from two main sources: uncer-
tainty about the future and apprehension about reactions 
of constituents, peers, funders, and other stakeholders 
(Meek et  al. 2015). (3) Conservation complacency: There 
are multiple examples of species that, despite alarms from 
scientists, nevertheless keep declining to the point of near 
or ultimate extinction (e.g., the Vaquita; Jaramillo-Legorreta 
et al. 2007). Conservation complacency arises from several 
key sources. First, humans often adopt culturally transmit-
ted perceptions about certain animal groups, as in the case 
of persistent negative attitudes toward snakes, arachnids, 
and many top predators (Musiani and Paquet 2004, Ripple 
et al. 2014, Pontes-da-Silva et al. 2016). Second, a lack of an 
understanding of historical ecosystem conditions can lead to 
“shifting baseline syndromes,” or “generational amnesia,” in 
which each generation of humans becomes accustomed to 
a more impoverished natural biodiversity (Jachowski et  al. 
2015). Third, inadequate or missing data on population sta-
tus can cause researchers to overlook sudden, rapid declines 
of common species (Lindenmayer et al. 2011) and can foster 
“low political will” to make decisions for species recovery, as 
in the case of the now-extinct Javan rhinoceros, Rhinoceros 
sondaicus annamiticus (Brook et al. 2014). Last, reliance on 
an overly simple paradigm about indications of extinction 
vulnerability fails to consider the complexity of ecosystems 
and the importance of subtle population declines. For exam-
ple, ecosystems can experience relatively subtle changes until 
they reach a tipping point and undergo a sudden shift to a 
contrasting regime in which a loss of biodiversity may occur 

(Scheffer 2009). Ultimately, an awareness of how human 
behavior influences decisionmaking is essential for improv-
ing conservation outcomes (Yaffee 1997).

Limited demographic information for decisionmaking.  Demographic 
data are infrequently available for most species threatened 
with extinction (but see Jaramillo-Legorreta et  al. 2007, 
Hinkson and Richter 2016). Such data are beneficial for 
informing listing and recovery for at least three reasons: 
(1) developing population projection models that can help 
determine whether a species warrants protection and, con-
sequently, its recovery criteria (but see Wolf et  al. 2015); 
(2) determining the spatial scale and connectivity of CH 
necessary to maintain metapopulation dynamics; and (3) 
providing a framework to guide decision analyses that help 
evaluate recovery approaches, develop timelines, establish 
habitat conservation targets, identify management triggers, 
and inform monitoring frequency or reintroduction strate-
gies (Kissel et al. 2014).

Population projection models, including population via-
bility analyses (PVAs), produce probabilistic predictions 
about extinction and future population growth and abun-
dance on the basis of the uncertain outcomes of activities 
to conserve or “take” individuals. Furthermore, quantita-
tive models provide a framework for evaluating proposed 
management activities against goals and objectives, such as 
maximizing recovery or increasing adult population size, 
which are not only transparent and defendable but are also 
structured to allow for learning and revision (McGowan and 
Ryan 2010). The ESA does not require the use of PVAs or 
other population projection models to determine whether a 
species is endangered or to develop recovery plans, although 
the National Research Council recommended their use 
when evaluating take decisions (ESA 1973, NRC 1995 in 
McGowan and Ryan 2010). Some have cautioned, however, 
that there can be significant limitations in relying solely on 
PVAs to develop recovery criteria (Wolf et al. 2015).

Historically, the importance of spatial scale and con-
nectivity to population declines and potential recovery 
has been undervalued, even though local extirpations of 
fragmented populations are common (Fahrig and Merriam 
1994). Considering the spatial relationships among land-
scape elements, the movement and dispersal characteristics 
of the species of interest (Pittman et al. 2014, Sinsch 2014), 
and the temporal changes in the landscape structure is essen-
tial when making decisions about CH (Fahrig and Merriam 
1994). Although such information can be scant for many spe-
cies, the necessary habitat features of both wetlands and sur-
rounding upland terrestrial core habitat are well defined for 
a variety of pond-breeding amphibians (Semlitsch and Bodie 
2003). The features that either promote or impede movement 
and connectivity between populations across the landscape 
are becoming better understood, in part because of con-
tributions from experimental studies on habitat resistance 
(Cosentino et al. 2011), fine-scale molecular genetics studies 
that differentiate distance from habitat features (Peterman 

Figure 2. The number of species of US amphibians 
that have received federal protection up to when the 
Endangered Species Act was enacted in 1973 and in 4-year 
intervals since.
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et al. 2015), and new approaches to assess functional connec-
tions among habitat patches (Peterman et al. 2016).

Modifications to procedures and standards used for des-
ignating CH have to be done in a legal framework, however, 
not just a biological one. The ability to do this must be 
framed within the enacted law, be contained in the official 
administrative record, and be consistent with the Services’ 
revised regulations (i.e., Code of Federal Regulations) for 
implementing the ESA (USFWS 2016c).

A paucity of demographic data can significantly impede 
the ability to make informed conservation decisions. 
Demographic data can be used to estimate a popula-
tion’s probability of extinction and recovery, determine the 
effects of years of negative growth on long-term popula-
tion trends, assess the sensitivity of a population’s trend to 
stochastic mortality events (Butler et al. 2013), and inform 
population supplementation strategies (Kissel et  al. 2014). 
In the absence of such information, there can be uncertainty 
regarding conservation objectives and the potential demo-
graphic outcomes of management actions. When a clear 
decision framework is lacking, stop-gap, reactive decisions 
have often been the approach to the conservation and man-
agement of natural resources (Butler et al. 2013). The use of 
population demography for conservation decisions, coupled 
with the use of critical decisionmaking skills in conservation 
practitioners (Johnson et al. 2015), could strengthen recov-
ery planning for imperiled species (Doak et al. 2015).

In many cases, scientific information that is needed to 
inform recovery decisions may be scarce because it is either 
underreported or inaccessible, such as that contained in 
“grey” literature, and because “much information never 
makes it into a written form of any kind [but], rather, is 
contained in the minds of experts” (Meek et  al. 2015). 
Research-implementation gaps can also limit the availability 
of information; that is, a “great divide” may occur between 
the existence of scientific information and its availability to 
and, ultimately, its implementation by conservation prac-
titioners (Arlettaz et  al. 2010). The ESA requires only that 
listing decisions be made using the “best available science,” 
but evaluating whether data are sufficient to make a deter-
mination can be challenging (Weijerman et al. 2014, Lowell 
and Kelly 2016). “Access to comprehensive and accurate 
information positively contributes to biodiversity conserva-
tion,” and for extremely small populations, the “open sharing 
of available information can make the difference between 
timely conservation actions that lead to persistence, and 
extinction” (Meek et al. 2015).

Conclusions
The USFWS and NMFS continuously seek to improve the 
process by which they implement the Endangered Species 
Act. Recent improvements include the development of a 
multiyear listing work plan, reforming regulations, encour-
aging more effective conservation partnerships, and adopt-
ing a Species Status Assessment (SSA) framework, which 
is “an analytical approach…to deliver foundational science 

for informing all ESA decisions” (USFWS 2016h). In addi-
tion, across all taxa, there has been a threefold increase in 
the number of listed species in recent years: Recent listings 
constitute nearly one-third of all the amphibian species that 
have ever been listed under the ESA. The listing process 
itself has become more transparent: Updates on progress on 
ESA petitions under review, the status of species proposed 
for listing or that are candidates for listing, and the status of 
species that are candidates for a status change or delisting 
are publicly available in the USFWS online system (2016a). 
These are excellent steps toward overcoming challenges to 
species recovery. In addition, consideration of the following 
six points by researchers, agency personnel, conservation 
practitioners, and resource managers could further enhance 
the recovery process: (1) Clarify the objectives for listing and 
recovery to include demographic criteria that will provide a 
sound framework for species recovery (Doak et  al. 2015). 
(2) Increase the collection and dissemination of basic demo-
graphic, life-history, and natural-history data to minimize 
delays in the development of recovery plans and help inform 
listing and recovery decisions. (3) For researchers, minimize 
the various “cultural barriers” that inhibit the sharing of 
information that is relevant for the recovery of imperiled 
species (Meek et al. 2015), as well as any gaps between con-
servation research and its implementation by conservation 
practitioners (Arlettaz et  al. 2010). Pragmatic solutions, 
such as increasing collaboration, may enhance information 
sharing, and research information gaps may be reduced if 
more conservation scientists become actively involved in the 
process of implementing conservation actions (Arlettaz et al. 
2010, Meek et al. 2015). (4) For conservation practitioners, 
supplement university and agency training in science and 
policy with critical skills in decisionmaking (Johnson et al. 
2015). Subsequently, evaluate the effectiveness of manage-
ment actions and modify as needed to improve recovery 
results (Gibbs and Currie 2012). (5) Within the legal 
framework of designating CH, incorporate information on 
landscape structure, along with the movement and dispersal 
characteristics of the species of interest, to address the need 
to restore genetic connectivity for species in fragmented 
landscapes. (6) At all levels, promote strong leadership and 
address status-quo biases, fear of failure, and conservation 
complacency.

In bringing the issue of climate change to the pub-
lic forum, Gore (2006) invoked these words of Winston 
Churchill: “the era of procrastination, of half-measures, of 
soothing and baffling expedients, of delays, is coming to its 
close. In its place we are entering a period of consequences.” 
For amphibians and other imperiled biodiversity, the out-
come of their “period of consequences” ultimately depends 
on whether challenges to species recovery, such as those 
discussed here, are overcome.
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